import logging import argparse import os import pandas as pd from templates import PROMPT_STRATEGY try: from aphrodite import LLM, SamplingParams print("- Using aphrodite-engine") except ImportError: from vllm import LLM, SamplingParams print("- Using vLLM") # 로깅 설정 logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) parser = argparse.ArgumentParser() parser.add_argument("-g", "--gpu_devices", help=" : CUDA_VISIBLE_DEVICES", default="0") parser.add_argument( "-m", "--model", help=" : write huggingface model name to evaluate", default="LDCC/Chat-Mistral-Nemo-12B-32k", ) parser.add_argument( "-ml", "--model_len", help=" : Maximum Model Length", default=4096, type=int ) args = parser.parse_args() logger.info(f"Args - {args}") os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_devices gpu_counts = len(args.gpu_devices.split(",")) # LLM 초기화 logger.info(f"Initializing LLM with model: {args.model}") llm = LLM( model=args.model, tensor_parallel_size=gpu_counts, max_model_len=args.model_len, gpu_memory_utilization=0.8, trust_remote_code=True, ) logger.info("LLM initialized successfully") sampling_params = SamplingParams( temperature=0, skip_special_tokens=True, max_tokens=args.model_len, stop=[ "<|endoftext|>", "[INST]", "[/INST]", "<|im_end|>", "<|end|>", "<|eot_id|>", "", "", ], ) # chat_temlate가 없다면 default로 세팅하는 과정 tokenizer = llm.llm_engine.tokenizer.tokenizer if tokenizer.chat_template is None: logger.info("chat template가 없으므로 default로 설정") default_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n' }}{% endif %}" tokenizer.chat_template = default_chat_template # 문제 로드 logger.info("Loading questions from questions.jsonl") df_questions = pd.read_json( "questions.jsonl", orient="records", encoding="utf-8-sig", lines=True ) logger.info(f"Loaded {len(df_questions)} questions") if not os.path.exists("./generated/" + args.model): os.makedirs("./generated/" + args.model) for strategy_name, prompts in PROMPT_STRATEGY.items(): logger.info(f"Processing strategy: {strategy_name}") def format_single_turn_question(question): return tokenizer.apply_chat_template( prompts + [{"role": "user", "content": question[0]}], tokenize=False, add_generation_prompt=True, ) single_turn_questions = df_questions["questions"].map(format_single_turn_question) print(single_turn_questions.iloc[0]) # 단일 턴 질문 처리 logger.info("Generating single-turn outputs") single_turn_outputs = [ output.outputs[0].text.strip() for output in llm.generate(single_turn_questions, sampling_params) ] logger.info(f"Generated {len(single_turn_outputs)} single-turn outputs") def format_double_turn_question(question, single_turn_output): return tokenizer.apply_chat_template( prompts + [ {"role": "user", "content": question[0]}, {"role": "assistant", "content": single_turn_output}, {"role": "user", "content": question[1]}, ], tokenize=False, add_generation_prompt=True, ) multi_turn_questions = df_questions[["questions", "id"]].apply( lambda x: format_double_turn_question( x["questions"], single_turn_outputs[x["id"] - 1] ), axis=1, ) # 멀티 턴 질문 처리 logger.info("Generating multi-turn outputs") multi_turn_outputs = [ output.outputs[0].text.strip() for output in llm.generate(multi_turn_questions, sampling_params) ] logger.info(f"Generated {len(multi_turn_outputs)} multi-turn outputs") df_output = pd.DataFrame( { "id": df_questions["id"], "category": df_questions["category"], "questions": df_questions["questions"], "outputs": list(zip(single_turn_outputs, multi_turn_outputs)), "references": df_questions["references"], } ) # 결과 저장 output_file = f"./generated/{args.model}/{strategy_name}.jsonl" logger.info(f"Saving results to {output_file}") df_output.to_json( output_file, orient="records", lines=True, force_ascii=False, ) logger.info(f"Results saved for strategy: {strategy_name}") logger.info("Generation process completed")