evaluator.py 6.58 KB
Newer Older
kihoon.lee's avatar
kihoon.lee committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import argparse
import json
import os
import re
import time
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime
from pathlib import Path
from threading import Lock
from typing import Dict, Union

import pandas as pd
from openai import AzureOpenAI, OpenAI

from templates import JUDGE_TEMPLATE

# Constants
TIME_START = datetime.now().strftime("%Y%m%d_%H%M%S")
LOCK = Lock()

AZURE_ENDPOINT = os.environ.get("AZURE_ENDPOINT", None)
AZURE_DEPLOYMENT_NAME = os.environ.get("AZURE_DEPLOYMENT_NAME", None)
AZURE_API_VERSION = os.environ.get("AZURE_API_VERSION", None)
USE_AZURE_OPENAI = AZURE_ENDPOINT is not None and AZURE_DEPLOYMENT_NAME is not None and AZURE_API_VERSION is not None


def get_args():
    parser = argparse.ArgumentParser()
kihoon.lee's avatar
update    
kihoon.lee committed
29

kihoon.lee's avatar
kihoon.lee committed
30
31
32
33
    parser.add_argument("-o", "--model-output-dir", help="Model Output Directory", required=True)
    parser.add_argument("-k", "--openai-api-key", help="OpenAI API Key", required=True)
    parser.add_argument("-j", "--judge-model", help="Judge Model", default="gpt-4-1106-preview")
    parser.add_argument("-t", "--threads", help="Thread count", default=42, type=int)
kihoon.lee's avatar
update    
kihoon.lee committed
34
    parser.add_argument("-m","--model",help=" : write huggingface model name to evaluate",default="LDCC/Chat-Mistral-Nemo-12B-32k",required=True)
kihoon.lee's avatar
kihoon.lee committed
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    parser.add_argument("--azure", help="Use Azure OpenAI", action="store_true")
    return parser.parse_args()


def create_openai_client(api_key: str):
    return OpenAI(api_key=api_key)


def create_azure_openai_client(api_key: str):
    return AzureOpenAI(
        azure_endpoint=AZURE_ENDPOINT,
        api_key=api_key,
        api_version=AZURE_API_VERSION,
    )


def create_answers(
    client, model_output, judge_model, is_multi_turn: bool = False, i=0
) -> Dict[str, Union[str, float]]:
    model_questions = model_output["questions"]
    model_outputs = model_output["outputs"]
    model_references = model_output["references"]

    prompt = (
        f"아래의 내용을 주어진 평가 기준들을 충실히 반영하여 평가해라. 특히 모델 답변이 언어 요구사항을 준수하는지 반드시 확인해야 한다.\n\n"
        f"**Question**\n{model_questions[0]}"
    )

    if model_references and model_references[0]:
        prompt += f"\n\n**Additional Reference**\n{model_references[0]}"

    prompt += f"\n\n**Model's Response**\n{model_outputs[0]}"

    if is_multi_turn:
        prompt += f"\n\n**Follow-up Question.**\n{model_questions[1]}"
        if model_references and model_references[1]:
            prompt += f"\n\n**Additional Reference**\n{model_references[1]}"
        prompt += f"\n\n**Model's Response**\n{model_outputs[1]}"

    prompt += "\n\n[[대화 종료. 평가 시작.]]"

    try:
        if USE_AZURE_OPENAI:  # azure
            response = client.chat.completions.create(
                model=AZURE_DEPLOYMENT_NAME,
                temperature=0.0,
                n=1,
                messages=[
                    {
                        "role": "system",
                        "content": JUDGE_TEMPLATE["multi_turn" if is_multi_turn else "single_turn"],
                    },
                    {"role": "user", "content": prompt},
                ],
            )
        else:  # openai api
            response = client.chat.completions.create(
                model=judge_model,
                temperature=0.0,
                n=1,
                messages=[
                    {
                        "role": "system",
                        "content": JUDGE_TEMPLATE["multi_turn" if is_multi_turn else "single_turn"],
                    },
                    {"role": "user", "content": prompt},
                ],
            )

        content = response.choices[0].message.content
        judge_message_match = re.search(r"평가:(.*?)점수:", content.replace("*", ""), re.DOTALL)
        judge_message = judge_message_match.group(1).strip() if judge_message_match else "No judge message found"
        judge_score_match = re.search(r"점수:\s*(\d+(\.\d+)?)", content.replace("*", ""))
        if judge_score_match:
            judge_score = float(judge_score_match.group(1))
        else:
            raise ValueError("No score found in response")

        return {"judge_message": judge_message, "judge_score": judge_score}

    except Exception as e:
        print("Error. Retrying after 20 sec", e)
        time.sleep(20)

        # 꼭 아래 이유가 아닐 수 있음. 핸들링 필요.
        if i > 3:
            print("Impossible prompt, aborting..!")
            return {
                "judge_message": "Impossible to judge due to repetition.",
                "judge_score": 0.0,
            }
        i += 1
        return create_answers(client, model_output, judge_model, is_multi_turn, i)


def process_item(client, row, judge_model, output_file):
    query_single = create_answers(client, row, judge_model)
    query_multi = create_answers(client, row, judge_model, is_multi_turn=True)

    row["query_single"] = query_single
    row["query_multi"] = query_multi
    row = row.to_dict()

    with LOCK:
        with output_file.open("a", encoding="utf-8-sig") as f:
            f.write(json.dumps(row, ensure_ascii=False))
            f.write("\n")


def process_file(client, file_path: Path, output_dir: Path, judge_model, threads: int, args):
    print(f"- 현재 Processing : {file_path}")
    df_model_outputs = pd.read_json(file_path, lines=True)

    output_file = output_dir / file_path.relative_to(args.model_output_dir)
    output_file.parent.mkdir(parents=True, exist_ok=True)

    with ThreadPoolExecutor(max_workers=threads) as executor:
        for row in df_model_outputs.iterrows():
            executor.submit(process_item, client, row[1], judge_model, output_file)


def is_hidden(filepath: Path) -> bool:
    return any(part.startswith(".") for part in filepath.parts)


def main():
    args = get_args()
    if args.azure:
        client = create_azure_openai_client(args.openai_api_key)
    else:
        client = create_openai_client(args.openai_api_key)

    input_dir = Path(args.model_output_dir)
    output_dir = Path("./evaluated")

    # Filter out hidden files
    json_files = [file for file in input_dir.rglob("*.jsonl") if not is_hidden(file)]
    print(f"Found {len(json_files)} JSON files to process")

    for file_path in json_files:
        output_file_path = output_dir / file_path.relative_to(input_dir)
        if output_file_path.exists():
            print(f"이미 평가 완료.. : {file_path}")
            continue
        process_file(client, file_path, output_dir, args.judge_model, args.threads, args)
        time.sleep(20)  # to handle ratelimit!


if __name__ == "__main__":
    main()